Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor.

نویسندگان

  • Konrad Zdanowski
  • Phillip Doughty
  • Piotr Jakimowicz
  • Liisa O'Hara
  • Mark J Buttner
  • Mark S B Paget
  • Colin Kleanthous
چکیده

ZAS proteins are widespread bacterial zinc-containing anti-sigma factors that regulate the activity of sigma factors in response to diverse cues. One of the best characterized ZAS proteins is RsrA from Streptomyces coelicolor, which responds to disulfide stress. Zn-RsrA binds and represses the transcriptional activity of sigmaR in the reducing environment of the cytoplasm but undergoes reversible, intramolecular disulfide bond formation during oxidative stress. This expels the single metal ion and causes dramatic structural changes in RsrA that result in its dissociation from sigmaR, leaving the sigma factor free to activate the transcription of antioxidant genes. We showed recently that Zn2+ serves a critical role in modulating the redox activity of RsrA thiols but uncertainty remains as to how the metal ion is coordinated in RsrA and related ZAS proteins. Using a combination of random and site-specific mutagenesis with zinc K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we have assigned unambiguously the metal ligands in RsrA, thereby distinguishing between the different ligation models that have been proposed. The data show that the zinc site in RsrA is comprised of Cys11, His37, Cys41, and Cys44. Three of these residues are part of a conserved ZAS-specific sequence motif (H37xxxC41xxC44), with the fourth ligand, Cys11, found in a subset of ZAS proteins. Cys11 and Cys44 form the trigger disulfide in RsrA, explaining why the metal ion is expelled during oxidation. We discuss these data in the context of redox sensing by RsrA and the sensory mechanisms of other ZAS proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FRET-Based System for Probing Protein-Protein Interactions between σR and RsrA from Streptomyces Coelicolor in Response to the Redox Environment

Protein-protein interactions between sigma factor σ(R) and its corresponding zinc-binding anti-sigma (ZAS) protein RsrA trigger the thioredoxin system for maintaining cellular redox homeostasis in S. coelicolor. RsrA bound to zinc associates with σ(R), inhibiting its transcriptional activity in a reducing environment. During disulfide stress it forms intramolecular disulfide bonds, leading to z...

متن کامل

Determinants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response

Various environmental oxidative stresses are sensed by redox-sensitive regulators through cysteine thiol oxidation or modification. A few zinc-containing anti-sigma (ZAS) factors in actinomycetes have been reported to respond sensitively to thiol oxidation, among which RsrA from Streptomyces coelicolor is best characterized. It forms disulfide bonds upon oxidation and releases bound SigR to act...

متن کامل

The Role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor.

The regulation of disulphide stress in actinomycetes such as Streptomyces coelicolor is known to involve the zinc-containing anti-sigma factor RsrA that binds and inactivates the redox-regulated sigma factor sigmaR. However, it is not known how RsrA senses disulphide stress nor what role the metal ion plays. Using in vitro assays, we show that while zinc is not required for sigmaR binding it is...

متن کامل

Thiol-based redox regulators in prokaryotes: The relevance of the CXXC motifs

Introduction Prokaryotes must cope with oxidative stress as a result of the normal aerobic metabolism as well as a consequence of exogenous drugs, radiations or even infection-derived host defences. Oxidative stress is responsible for damaging essential cellular structures and biomolecules such as DNA, lipids or proteins. Intriguingly, some transcriptional regulators are capable to sense those ...

متن کامل

The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core

Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 45 27  شماره 

صفحات  -

تاریخ انتشار 2006